Description of a Telemetry Procedural Language
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A procedural language and a compiler for it are being developed as an aid in
the writing of programs which will process telemetry data received from space-
craft. This article describes the language. Also, the philosophy that leads to the
choice of the language is briefly presented.

l. Introduction

A study has been undertaken to demonstrate the effec-
tiveness of a high-level programming language in the
design of a mission-independent telemetry processor.
While an assembly language provides greater freedom
to the programmer, the greater ease, hence speed, with
which a program can be written in a high-level language
can be decisive in a real-time environment.

As a first step in this study a Telemetry Procedural Lan-
guage (TPL) has been defined. TPL is oriented toward
the specific programming procedures involved in a subset
of a telemetry processor. This subset has been chosen
because (1) it constitutes a relevant part of the whole
telemetry software subsystem, and (2) it requires exten-
sive changes from one mission to another. In the design
of TPL, a large choice of sophistication nuances was
available. A descriptive approach requires from the pro-
grammer only the description of the processor. A more
functional approach provides the programmer with very
powerful tools, but the concern with the program logic is
left to him. Each approach has its own advantages as well
as disadvantages. A descriptive language depends heavily
upon the actual configuration of the telemetry processor,
and the corresponding compiler generates progressively
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worse code as the configuration changes from the orig-
inal one. A functional language, however, is much more
versatile and more suitable in a mission-independent en-
vironment. Hence, TPL has been defined as a functional
language.

Il. Formal Specification of TPL

A given language, e.g., TPL, has to be described in
some language. A language which is used to describe
another is called a meta-language. English can serve as
such a meta-language. However, ordinary English is not
concise enough and lacks the necessary precision. The
Backus-Naur Form (BNF) is somewhat better, but still
inadequate.

The transmogrification language (TMGL) is similar to
the BNF and may be used to specify a given language.
TMGL is both human-readable (ie., a publication lan-
guage) and computer-readable [i.e., by the transmogrifica-
tion (TMG) system]. A specification of a given language,
consisting of the grammar and a translation into another
language (usually an assembly language) written in
TMGL, can be compiled by the TMG system to yield a
compiler for the given language. Therefore, such a speci-
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fication of a given language is definitive: There can be
no discrepancy between the human-readable specification
and the compiler’s performance.

This article provides an informal specification of TPL.
A formal precise specification of TPL is being written
in TMGL.

Ill. The Features of TPL

TPL is a FORTRAN-like language. Most of the usual
features of FORTRAN 1V H are provided in TPL. The
four features of FORTRAN IV which intentionally are
not part of TPL are:

(1) There are no DOUBLE PRECISION variables or
constants,

(2) There are no COMPLEX variables.

(3) Variables may not be declared as either REAL or
INTEGER. Instead, they are identified exclusively
by their initial letter.

(4) The EQUIVALENCE statement is not allowed.

TPL is intended to be a living, growing language; thus,
new features will be introduced as the need for them
arises. The following material describes those features,
beyond FORTRAN, which already have been introduced
into TPL.

A. Commas Are Optional

Commas are optional as syntactical delimiters between
like entities. If a syntactical confusion would result, a
delimiter is necessary but may be either a space or a
comma. For example, one may declare

DIMENSION A(11 12 13)B(14 15)

The easy safe procedure that may be adopted by the pro-
grammer is to employ a space wherever FORTRAN
would desire a comma or a space. However, the specific
rules are as follows:

0 Excess spaces are permissible, except inside of a
word.

1 A space has to be used as a delimiter between the
logical operators X or V and any preceding or fol-
lowing name of a variable.

2 A space has to be used as a delimiter between the
logical operators X or V and any following constant.
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3 A space has to be used as a delimiter, on one side
only, when the logical operator . is preceded by an
integer constant and followed by a constant.

4 A space or a comma has to be used as a delimiter
between a constant and a following constant.

5 A space or a comma has to be used as a delimiter
between a variable and a following variable or
constant,

6 A space has to be used as a delimiter between a key-
word and a following variable or constant.

Violation of any of these rules may lead to an unpredict-
able misinterpretation, consisting of one or more of the
following results, listed in order of decreasing probability:

1 Erroneous target code, which will yield incorrect
computed results during execution.

o

The error message “incomprehensible.”
3 Correct recovery.
4 Other error message(s).

5 If a subroutine or function call is involved, a failure
during execution.

6 Partial recovery, which will yield correct computed
results but be wasteful of computer time.

B. Active Field Is Columns 1-5,7-72

A non-blank column 6 indicates that a given physical
card is a continuation of the preceding physical card.
Column 6 may not be used for any other purpose. The
active field on any physical card consists of columns 1
through 5 inclusive and 7 through 72 inclusive. A logical
card consists of the active field of any physical card with
a blank in the continuation column and the active fields
of as many continuation cards as contiguously follow the
given physical card. Both the statement number, if pres-
ent, and the statement may be placed anywhere on a
logical card, subject to the constraint that the statement
number, if present, must precede the statement on a given
logical card.

C. Asterisk * for Comment

The asterisk * is used as a designator of a comment
card. This asterisk must be the first non-blank character
in the given logical card. It need not be in column one.
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D. Mixed (IBM vs UNIVAC) Style Punching

TPL utilizes a 54-character set. Since the IBM 407 has
onlv 48 positions on its print wheels, it cannot list cards

26 Alphabetic characters
10 Numeric characters

1 Space | blank b

7 Special characters .5

These characters may be keypunched or listed on any
modern equipment without any difficulty. An additional
10 special characters differ among the various modern
equipments:

plus +
hyphen

right parenthesis
logical OR
ampersand
logical NOT
apostrophe
double quote
equal sign =
left parenthesis (

Lo

»

For these characters TPL will accept either the IBM sys-
tem 360 punching or the UNIVAC 1108/9300 punching,
mixed in any manner intra | inter card. Hence, cards may
be punched originally or corrected in either style, at the
immediate convenience of the programmer, but with a
view toward which equipment he intends to employ for
the listing of the deck.

E. IF| OTHERWISE| ANYHOW
The blocking set of keywords
IF|OTHERWISE|ANYHOW

is available and preferable to the use of numbered state-
ments for the execution of exclusive alternative blocks of
coding. A complete description of this feature is contained
in the articles referenced in the Bibliography and will not
be repeated here.

F.DO|DO_END

The blocking set of keywords DO|DO_END is avail-
able and preferable to the use of numbered statements
for the execution of a DO-loop. See the references for a
complete description of this feature.

G. SECTION

The keyword SECTION can be employed for seman-
tically delimiting local blocks of coding with regards to
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of the TPL source language unambiguously. Forty-four
characters are identical on the IBM 360 and UNIVAC
1108,/9300 computers:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

real names and statement numbers. Thus, the source
coding within each numbercd SECTION must use state-
ment numbers in the closed integer interval [1, 999] and
the same numbers may be reused in other sections. Simi-
larly, the same source names may be reused in other sec-
tions. THE SECTIONs must be numbered in strictly
increasing order with the numbers taken from the closed
integer interval [1, 25].

H. UP|DOWN

The keywords UP|DOWN may be employed to nest
blocks of local variables (but not statement numbers) to
any depth. A new SECTION will force as many UP steps
as necessary to return to the standard level. An automatic
drop down to the previous level will not follow.

I. An Arithmetical Sub-atom Includes a Logical Sum

in Parentheses

In addition to the two stundard FORTRAN recursions
resulting from the definition of a logical atom to include
a logical sum in parenthescs and an arithmetical sub-
atom to include an optionally signed arithmetical sum in
parentheses, the third recursion resulting from the defini-
tion of an arithmetical sub-atom to include a logical sum
in parentheses is permitted. The BNF definitions are

(LA) = ((LS))] {&} (LA, |(AS) (relational operator)
-1
(AS)|(primitives,
(AAT) = ((SAS))|((LS))|/primitives)

J. NEW_DECK

For multiple compilation, the compiler program is re-
initialized by the use of the keyword NEW_DECK. A
new HEADER card optionally may follow immediately.

K. ASSIGN

The built-in in-line integer replacement function
ASSIGN uses the syntax

. (integer constant)
ASSIGN (scalar integer variable) =

(arithmetic sum)
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Thus, the syntax is the same as that of an arithmetical
equation, but preceded by the keyword ASSIGN. For
example,

ASSIGNI=3

L. Logical Operations Performed on 32 Bits in Parallel

The logical variables are 32 bit integers with

0 = FALSE.
—1 = .TRUE.

The choice of —1, rather than +1, for TRUE yields an
all-one-bits word as TRUE. Such a word easily may be
masked to yield one-bits at any desired position in the
word without the necessity of shifting or propagating
operations. Each of the logical operations, as well as the
statement

IF ((LS) ) (integer variable which reduces to a
scalar) = (LS)

is executed as 32 bits in parallel subject to the same indi-
cated operators. In all other logical IF statements; i.e.,

IF ((LSy) . ..
the argument of the IF is tested for non-zero; namely,
IF ((LS).NE.O) . . .

In summary, .FALSE. is always zero. .TRUE. is gener-
ated as minus one, is computed upon as 32 bits in parallel,
and is used as non-zero; i.e., at least one bit being a one.

M. Extracting Triplet

An extracting ordered triplet has been introduced as
an additional logical atom. This triplet permits the un-
packing of integer|logical variables and right justifying
them in one operation. (This is similar to the UNIVAC
FORTRAN V FLD function.) In BNF notation, this
triplet is defined as:

(logicalatom) = . . . |( (logical sumy), (integral
arithmetical sum), (integral arithmetical
sum) ) |( (logical sum},

(integral arithmetical sum) )] . . . .

The clements of the triplet are:

a logical sum from which the extraction is to be
performed
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b integral arithmetical sum indicating the start-
ing bit position

¢ integral arithmetical sum indicating the quan-
tity of contiguous bits to be extracted

The third element defaults to a one. For example,
J=(1,22,3)

extracts the bits 22 23 and 24 from I and right justifies
them. The equivalent FORTRAN coding is

DATA M3/Z7/
] = LAND(SHFTR(I, 7), M3)

N. Exclusive OR Operator

The exclusive OR operator X has been introduced at
the top of the hierarchy of logical operators; i.e., over the
inclusive OR operator V and the AND operator.. For
example, the parentheses in the expression

(A.LE.B).(C.GT.D)X((E=F).(G$=H)V D)X(J.K.L)

are redundant; thus, the foregoing expression is equiva-
lent to the expression

ALEB.CGT.D X E=F.G$=H VI X JK.L

O. Logical-Shift Operators

The logical-shift operators Q and R have been intro-
duced over the top of the hierarchy of strictly logical
operators. They are the logical-left-shift and logical-right-
shift operators, respectively. Since these logical-shift oper-
ators are placed between dissimilar elements, they cannot
be used more than once in a given logical sum. The OR
operators X and V may be used left-recursively. In BNF
notation, their comparative syntax is

(LS) = (LSX) (QR) (integer arithmetic sum) [(LSX)
(LSX) = (LSV) X (LSX)| (LSV)
(LSV) = (LP)V (LSV)|(LP)

(QR)=Q|R
In the example

DATA M/Z380/
J=I.M R7
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we extract bits 22 23 and 24 from I and right justify them
into J. The same result could be achieved by the triplet

J={@223)
The equivalent FORTRAN coding would be

DATA M/Z380/
] = SHFTR(LAND(I, M), 7)

and

DATA M3/Z7/

] = LAND(SHFTR(I, 7), M3)
respectively.

P. Generalized Limits for the DO-Index

In addition to permitting the usual integer or scalar
integer variable as the two or three limits for the index
in a DO-statement, a scalar arithmetical sum also is ac-
ceptable as any one or more of the DO-limits. For exam-
ple, the one statement

DO I =11+12*13 T*14-15 16-+1
is equivalent to the four statements

J1 =11+12*13

J2 = T414-15

13 =16+1

DO I=]1J2]3
where the Js are dummy variables. Alternatively, a single
integer array, with all of the subscripts except the first
being specified integers or scalar integer variables which
are constant within the DO-loop, may be specified as the

set of values to be taken on by the DO-index. For exam-
ple, if the array II has been declared

DIMENSION 1I(31 52 13)
then the one statement
DO I = I1(12-3*112 2*13)
is equivalent to the four statements
J2 =12-3*112

13 = 2113
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DO J1=1 31
I =II(J1 J2 J3)

The DO-array may not be employed in an implicit DO-
statement, e.g., in an IO-statement.

Q. RETRIEVE

The built-in in-line integer replacement function of two
variables RETRIEVE has been defined. This function
uses a syntactical structure patterned after that of the
ASSIGN function; namely,

RETRIEVE (integer variable which reduces to a
scalar) = (integer array) ( (integer
variable which reduces to a scalar) )

For example, the declaration
DIMENSION K(100)

followed by the statement
RETRIEVE I =K(L)

is equivalent to the FORTRAN coding consisting of the
same declaration

DIMENSION K(100)
followed by the five statements

DO 1 1=1,100
IF(K(I).EQ.L) GO TO 2
1 CONTINUE
1=0
2 CONTINUE

The result is that I becomes the subscript whose corre-
sponding element in the array K has the value of the
argument L. If no element has the value L, then I is set
to zero to indicate the failure to find a match.

If the array has more than one dimension, the addi-
tional subscripts may be specified immediately to the
right of the second argument. These additional subscripts
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are not involved in the retrieval process. In the foregoing
example, let us assume that the array K had been declared

DIMENSION X(100 2 3)

and that the subscripts for the second and third dimen-
sions are M2 and M3, respectively. Then the statement

RETRIEVE I = K(L M2 M3)

is equivalent to the same FORTRAN coding as in the
original example, except that the IF-statement is replaced

by
IF(X(I,M2,M3).EQ.L) GO TO 2

Thus, contrary to appearances, L is an argument but M2
and M3 are subscripts.

R. GOTO|sKiP

A syntactically new version of the GOTO has been
introduced to facilitate the execution of a selected one
out of several blocks of coding. The BNF definition of
this version of the computed GOTO is

(GOTO)= . .. |GO TO (integer variable) ,
(integer constant)| . . . .

The integer constant specifies how many alternative blocks
of coding are expected to follow contiguously. The integer
variable selects the individual block of coding to be exe-
cuted immediately after the execution of the given GOTO.

The semantical requirement upon the alternatives is
that the blocks of coding must follow the GOTO con-
tiguously in sequence and that each block of coding be
terminated by a SKIP statement. The amount of SKIPs
(and hence of alternative blocks of coding) must equal
that specified by the integer constant in the governing
GOTO statement.

For example, the four-way branch coded in the TPL

GOTOI 4

s ¥

SKIP

Sy ¥
SKIP
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is equivalent to the FORTRAN computed GOTO
GO TO (1,2 3 4),1

immediately followed by the coding

1 s,%

GO TO 5
2 s§,*

GO TO 5
3 s3*

GO TO 5
4 s,*
5 s

In each of the foregoing two cases, the statements s
with subscripts are any executable statements. The aster-
isk * following an s indicates that one or more statements
may be inserted at the indicated location in the coding.

These GOTO with their SKIPs may be semantically
nested to any depth.

S. Four Lexical Structures for REAL Constants

Only four alternative lexical structures for a REAL con-
stant are permitted; i.e.,

(sign) (one-or-more digits) . (one-or-more digits)
(sign) (one-or-two digits)|
(sign) (one-or-more digits) . (one-or-more digits)|
(one-or-more digits) . (one-or-more digits)
(sign) (one-or-two digits)|

(one-or-more digits) . (one-or-more digits)

T. Integer Constant | Variable Employed as Logical

Since any integer constant|variable may be employed
as a logical constant|variable, there is no provision for
the declaration of LOGICAL variables.
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U. Single Character Symbols for Logical Operators

Single character symbols are used for certain of the
logical operators:

TPL FORTRAN

.AND.

.OR. {(inclusive)
.OR. (inclusive)
XOR. (exclusive)
= .NOT.

NOT.

.NE.

ho

il e a—<-
i

-«
]
]

These indicated FORTRAN style multiple-character sym-
bols are not part of the TPL.

V. Abbreviations of Certain Keywords
The keywords

ANYHOW
DIMENSION
FUNCTION
OTHERWISE
RETRIEVE
RETURN
SUBROUTINE

optionally may be abbreviated in TPL to

ANY
DIM

FUN
OTH
RET
RET
SUB

respectively. For example, it is permissible to write

SUB A(B N C)
DIM B(N) C(N)
DOI=1N
C(I) = F(B(I))
DO END

RET

FUN F(X)

F = X*X

RET
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W. A Subroutine Call Accomplished Without the
Keyword CALL

A subroutine call is accomplished without the keyword
CALL. Thus, for example,

SUBA(B C D E)
is equivalent to the FORTRAN
CALL SUBA(B,CD,E)

The keyword CALL is not part of the TPL.

X. A Define-Before-Use Diagnostic

A semantical diagnostic system which reports any use
of a variable before that variable has been defined and
also reports any definitions of a given variable after it
already has been defined once has been introduced. There-
fore, the source coding has to be written in the order of
execution; i.e., any unconditional, computed, or assigned
GO TO has to point downwards, except if it is employed
to close a DO-loop that has been coded explicitly.

The only syntactical effect is that the input and output
variables of a subroutine (or function) call must be desig-
nated. The convention that all of the input variables are
stated first while all of the output variables are stated last
is adopted. A semicolon ; is required as a delimiter be-
tween these two sets of variables. For example, the coding
in a routine

SUBA(B C ; D E)
calls the subroutine
SUBROUTINE SUBA(B C ; D E)

Here, we designated that the variables B and C are
evaluated, prior to the call, in the higher level routine
then used by the subroutine SUBA as input variables from
which to compute the output variables D and E. These
latter variables are passed up to the higher level routine
for further use. If no semicolon is present, it is assumed
that all the variables are input variables. It is a syntactical
error to place the semicolon at the end of the calling
sequence.

The semicolon syntactically is considered as another
element in the calling sequence. Thus, if one insists in
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inserting the optional delimiting commas, the foregoing
two lines of coding would be

SUBA(B,C,;,D,E)

SUBROUTINE SUBA(B,C,;,D,E)

IV. An Example of the Usefulness of TPL
in Telemetry

The following example shows how one might unpack
successive values of the array IT, report the state of sev-
eral two-bit logical variables, and print the values of
several other integral variables. It is assumed that suitable
declarations of the arrays would have DIMENSIONed
them and set their values by means of, e.g., DATA state-
ments.

The seven arrays contain the indicated information:

IA  list of the code numbers of the logical vari-
ables

IB  list of the code numbers of the integral vari-
ables

ID  list of the code numbers of all of the variables

IO list of the subscripts of the array IT designat-
ing the element in which the given variable is
located

IP  list of the applicable starting positions

M list of the applicable masks

IR list of the applicable required right shifts
The coding follows:

DO ITT =1, ITTMAX
READ(5, 8) IT

8 FORMAT(7Z8)
IF(IT(...) . mask)
DO I=1A
RET J = ID(I)
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K =1IT(I0(J) IP 2) + 1
GO TO K, 4
WRITE(S, 1) I
1 FORMAT(IX, T16, 16, T28, 4HZERO)
SKIP
WRITE(S, 2) I
2 FORMAT(IX, TI6, 16, T28, 3HONE)
SKIP
WRITE(S, 3) I
3 FORMAT(IX, TI6, I6, T28, SHTWO)
SKIP
WRITE(S, 4) I
4 FORMAT(IX, T16, 16, T28, 5SHTHREE)
SKIP
WRITE(S, 5)
5 FORMAT(13H+THE VALUE OF, 10X,
SHWAS)
DO END
DO I-IB
RET J = IB(I)
K =1IT(10(J)) . M(J) R IR(])
WRITE(6, 6) I, K
6 FORMAT(15H THE VALUE OF , 16,
7TH WAS | 112)
DO END
DO END OTHERWISE
WRITE(, 9) ITT
9 FORMAT(33HIREQUESTED TERMINATION
ON ITT =, 16)
ANYHOW
IF($ITT) WRITE(6, 10)
10 FORMAT(22HIEXHAUSTED TERMINATION)

V. Remarks

Some of the features of the TPL were already present
in the spacecraft-simulation procedural language. These
features are described in greater detail in the original
articles (Refs. 1 and 2).
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